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 A Longitudinal Study of Invention
 and Understanding in Children's

 Multidigit Addition and Subtraction

 Thomas P. Carpenter, University of Wisconsin-Madison
 Megan L. Franke, University of California at Los Angeles

 Victoria R. Jacobs, California State University-San Marcos
 Elizabeth Fennema, University of Wisconsin-Madison

 Susan B. Empson, University of Texas at Austin

 This 3-year longitudinal study investigated the development of 82 children's understanding of
 multidigit number concepts and operations in Grades 1-3. Students were individually interviewed
 5 times on a variety of tasks involving base-ten number concepts and addition and subtraction
 problems. The study provides an existence proof that children can invent strategies for adding
 and subtracting and illustrates both what that invention affords and the role that different con-
 cepts may play in that invention. About 90% of the students used invented strategies. Students
 who used invented strategies before they learned standard algorithms demonstrated better
 knowledge of base-ten number concepts and were more successful in extending their knowledge
 to new situations than were students who initially learned standard algorithms.

 An understanding of most fundamental mathematics concepts and skills devel-
 ops over an extended period of time. Although cross-sectional studies can provide
 snapshots of the development of these concepts at particular points in time, longitudinal
 studies provide a more complete perspective; however, relatively few studies
 have traced the development of fundamental mathematics concepts in children over
 more than a single year. In this paper we report the results of a 3-year longitudinal
 study of the growth of children's understanding of addition and subtraction involv-
 ing multidigit numbers. We focus particularly on children's construction of
 invented strategies for adding and subtracting multidigit numbers. The overarch-
 ing goal of the study was to investigate the role that invented strategies may play
 in developing an understanding of multidigit addition and subtraction concepts and
 procedures. We trace the development and use of invented addition and subtrac-
 tion strategies and examine the relation of these strategies to the development of
 fundamental knowledge of base-ten number concepts and the use of standard
 addition and subtraction algorithms. Finally, we consider what the use of invented
 strategies affords by way of avoiding systematic errors and extending knowledge
 of basic multidigit operations to new problem situations.

 The research reported in this paper was supported in part by the National Science
 Foundation under Grant Number MDR-8955346. The opinions expressed in this paper are those
 of the authors and do not necessarily reflect the views of the National Science Foundation.
 An earlier version of this paper was presented at the annual meeting of the American
 Educational Research Association, New York, 1996.
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 4 Invention and Understanding

 BACKGROUND

 There is mounting evidence that children both in and out of school can construct
 methods for adding and subtracting multidigit numbers without explicit instruction
 in specific procedures (Carpenter & Fennema, 1992; Carraher, Carraher, &
 Schliemann, 1987; Cobb & Wheatley, 1988; Fuson & Burghardt, 1993; Hiebert &
 Wearne, 1996; Kamii, 1989; Labinowicz, 1985; Nunes, 1992; Olivier, Murray, &
 Human, 1990; Saxe, 1988). It is hypothesized that these invented strategies can play
 a central role in making problem solving a focus of learning arithmetic procedures
 and in helping students develop number sense and understanding of multidigit oper-
 ations (Carpenter et al., 1994). Children employ a number of strategies for solving
 multidigit problems at varying levels of sophistication. Many of these strategies are
 constructed by children individually or collectively, without direct instruction by
 the teacher (for a more complete discussion of children's strategies, see Fuson et
 al., 1997). Initially, children may use individual counters to model addition or sub-
 traction operations. As they gain understanding of base-ten numbers, they begin to
 use various materials representing tens rather than individual counters. Over time,
 many children construct procedures for adding and subtracting multidigit numbers
 without using physical materials of any kind. These are the strategies that are the
 focus of this study, and we use the term invented strategy to refer to them.

 Fuson et al. (1997) provided a comprehensive analysis of invented strategies chil-
 dren use to solve multidigit addition and subtraction problems. The following pro-
 tocols for finding the sum 38 + 26 illustrate distinctions among three primary classes
 of invented strategies identified in this analysis:

 Sequential: "Thirty and twenty is fifty, and the eight makes fifty-eight.
 Then six more is sixty-four."

 Combining units separately: "Thirty and twenty is fifty, and eight and six is
 fourteen. The ten from the fourteen makes sixty, so it's sixty-four."

 Compensating: "That's like forty and twenty-four, and that's sixty-four."

 In the sequential strategy, the sum is kept as a running total. In the combining-units-

 separately strategy, the tens and ones are added separately, then combined. In the
 compensating strategy, the numbers are adjusted to simplify the calculation.
 Similar strategies are used for subtraction, although they are somewhat more dif-
 ficult to implement. The following examples illustrate these strategies for the dif-
 ference 62 - 28:

 Sequential: "Sixty take away twenty is forty. Then put back the two; that's
 forty-two. Now take away the eight from the forty-two. Take away the two,
 that's forty, and then six more makes thirty-four."

 Combining units separately: "Sixty take away twenty is forty. You can't
 take eight from two. If you take two from the two, you still have six more to
 take away. Now take the six from the forty; that's thirty-four."

 Compensating: "Sixty-two take away thirty is thirty-two, but we're taking
 away twenty-eight so it's two more. It's thirty-four."
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 T. P. Carpenter, M. L. Franke, V. R. Jacobs, E. Fennema, and S. B. Empson 5

 Both standard algorithms and invented strategies reduce a complex procedure to
 simpler components that can be operated on using available knowledge or proce-
 dures. For example, most procedures for adding or subtracting multidigit numbers
 essentially reduce the calculation to a series of sums or differences of single-digit
 numbers (or corresponding multiples of 10, 100, etc.). There are, however, some
 fundamental differences between standard algorithms and the strategies that chil-
 dren construct to solve multidigit problems. Standard algorithms have evolved over
 centuries for efficient, accurate calculation. For the most part, these algorithms are
 quite far removed from their conceptual underpinnings. Invented strategies, on the
 other hand, generally are derived directly from the underlying multidigit concepts.
 For example, with standard addition and subtraction algorithms, numerals are
 aligned so that the ones, tens, hundreds, and larger digits can be added in columns.
 But in the addition of columns, no reference is made to the fact that the addition involves

 the same unit (ones, tens, hundreds, etc.); one simply adds numbers in a column.
 Most invented strategies, on the other hand, specifically label the units being
 combined. For example, in the above addition examples, the invented strategies are
 based on adding 30 and 20 or 3 tens and 2 tens rather than adding two numbers that

 appear in the same column.1

 Sequence of Development of Major Concepts and Procedures

 Longitudinal studies afford the opportunity to trace the sequence in which major
 concepts and procedures develop. Although there are alternative perspectives,
 most current theoretical arguments support the development of conceptual knowl-

 edge before students master algorithmic procedures (Hiebert, 1986; Hiebert & Carpenter,
 1992). If invented strategies provide a basis for understanding multidigit procedures,
 it might be expected that there would be critical differences between students who

 used invented strategies before they learned standard algorithms and students
 who initially learned standard algorithms without first constructing invented strate-
 gies. A major focus of our analysis deals with distinctions between students who
 used standard algorithms before using invented strategies and students who used
 invented strategies before or concurrently with their use of standard algorithms.

 Development of base-ten number concepts. The sequence in which students develop
 an understanding of base-ten number concepts and use invented strategies is also
 of theoretical and practical interest. Because invented strategies are based on
 base-ten number concepts, it might be expected that students' use of invented strate-

 gies would be related to understanding of these concepts, but there is an ongoing
 debate whether children should master fundamental base-ten number concepts before
 they learn procedures for adding and subtracting multidigit numbers or whether learn-

 ing of these concepts and procedures might be more integrated (Baroody, 1990; Fuson,

 1990). The debate centers around the level of understanding of base-ten concepts

 1Under certain instructional conditions, children also construct variations of written algorithms
 involving base-ten number concepts (Fuson & Burghardt, 1993).
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 6 Invention and Understanding

 that is a prerequisite. One perspective is that understanding multidigit procedures
 depends on a reasonably well-developed understanding of base-ten number con-
 cepts; the other is that learning procedures for adding and subtracting multidigit num-

 bers provides a context for motivating and supporting the development of base-ten
 number concepts. Given that invented strategies are based on children's understanding
 of base-ten concepts, the argument can be made that children need to understand
 base-ten number concepts before they can invent their own procedures for adding
 and subtracting multidigit numbers. On the other hand, because grouping by tens
 is made so explicit in invented strategies, the use of invented strategies may pro-
 vide a context for furthering the development of base-ten understanding.

 Hiebert and Wearne (1996) found that understanding of base-ten number con-
 cepts and the use of appropriate multidigit addition and subtraction strategies
 were related. Children who demonstrated understanding of base-ten number con-

 cepts were more successful in inventing and modifying strategies for adding and
 subtracting multidigit numbers than children who demonstrated little or no under-

 standing of base-ten number concepts. Their study did not, however, specifically
 examine whether students developed understanding of base-ten number concepts
 before they used invented strategies or whether children's multidigit procedures devel-

 oped concurrently with their base-ten number concepts.

 Consequences of Using Invented Strategies

 A primary goal of this study was to examine the role that invented strategies play

 in developing understanding of multidigit addition and subtraction. One important

 feature of knowledge that is acquired with understanding is that it can be extended

 to solve unfamiliar or nonroutine problems more readily than strictly procedural knowl-

 edge (Hiebert, 1986; Hiebert & Carpenter, 1992; Hiebert & Wearne, 1996). If invented

 strategies play a central role in the development of understanding of multidigit pro-

 cedures, it would be expected that the development of invented strategies would be

 related to children's ability to apply their multidigit knowledge flexibly to problems

 that required more than the routine application of established procedures.
 It also might be expected that the use of invented strategies would eliminate or

 at least reduce the occurrence of systematic errors based strictly on procedural appli-

 cations of symbolic procedures. A substantial body of research has focused on stu-

 dents' systematic errors in executing addition and subtraction algorithms (Brown
 & VanLehn, 1982; VanLehn, 1986). One hypothesis is that these systematic errors
 or buggy algorithms, as they frequently are called, are a result of students relying

 exclusively on rote manipulations of symbols, and that developing understanding
 of multidigit procedures would eliminate most buggy algorithms (Fuson, 1992a, 1992b;

 Resnick, 1982). If invented strategies provide a basis for developing understand-
 ing of multidigit procedures, it follows that students who use invented strategies before

 they learn standard algorithms should develop fewer buggy algorithms than students

 who start out using standard algorithms.
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 METHOD

 Eighty-two students were individually interviewed in the winter of first grade and

 in the fall and spring of second and third grades on a variety of tasks involving base-
 ten number concepts, addition and subtraction word problems, addition and sub-
 traction computation problems, and some problems that required students to
 extend their knowledge of base-ten number concepts and multidigit addition and
 subtraction procedures.

 Sample

 The initial sample for the study consisted of 120 students in three schools. Six boys
 and six girls were randomly selected from each of the 10 first-grade classes in the
 three schools. One fourth of the students in one school were lost to the study in a bound-

 ary change, and there was some natural attrition as students moved during the 3 years
 of the study. The final sample consisted of the 82 students who participated in all
 five interviews. Over the 3 years of the study, the students were distributed among
 the classes of 27 teachers: 10 in the first grade, 8 in the second, and 9 in the third.

 The three schools served somewhat different populations. One school served a
 predominately rural, White (99%) population. During the first year of the study, 412
 were enrolled in the school; 4% of the students received free or reduced-price lunches.
 The second school had a population of 273 students; 70% of the students were White,
 and 26% received free or reduced-price lunches. The third school enrolled 541 stu-
 dents; 91% of the students were White, and 8% received free or reduced-price lunches.

 Instruction

 All students in the study were in classes of teachers who were participating in a
 3-year intervention study designed to help teachers understand and build on chil-
 dren's mathematical thinking (Carpenter, Fennema, & Franke, 1996; Fennema et
 al.,1996). The emphasis of the program was on how children' s intuitive mathematical

 ideas emerge to form the basis for the development of more formal concepts and
 procedures. Teachers learned about how children solve problems using base-ten mate-
 rials and the various invented abstract strategies children often construct.

 No curricular materials or specific guidelines for instruction were provided, and
 teachers had latitude to plan their own instruction. As a consequence, there was vari-
 ation in the instruction of the teachers. However, several features characterized instruc-

 tion in most classrooms (Fennema et al., 1996). Word problems were used
 extensively. Students generally were given opportunities to solve problems using
 a variety of strategies, and alternative strategies were discussed with the whole class
 or in small groups.

 The first-grade teachers provided students opportunities to solve addition and sub-

 traction word problems involving regrouping of two- and, in some cases, three-digit
 numbers. Tens blocks and other base-ten materials were available, and most children

 initially used them to solve multidigit problems. By the end of the year, some chil-
 dren in each of the classes used and discussed invented strategies, but most children
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 8 Invention and Understanding

 continued to use counters and base-ten materials in solving multidigit problems. First-
 grade teachers generally did not formally teach standard addition or subtraction algo-

 rithms. Second-grade teachers initially provided children opportunities to solve problems

 using base-ten materials and to discuss a variety of procedures. At the time of the
 Grade 2 fall interview, standard algorithms had not been a focus of instruction. By
 the spring interview, almost all second-grade students had been exposed to the stan-
 dard addition and subtraction algorithms. Although most third-grade teachers pro-
 vided opportunities for students to use and discuss a variety of strategies, standard
 algorithms played a prominent role in students' calculations.

 Interview Tasks

 The interview tasks assessed (a) students' knowledge of base-ten number con-
 cepts, (b) their strategies for solving addition and subtraction word problems and
 computation exercises, (c) their abilities to use specific invented strategies, and (d)
 their abilities to extend and use addition and subtraction procedures flexibly. Not
 all tasks were administered in each interview. Easier tasks from the earlier inter-

 views were replaced by more difficult tasks in later interviews. Numbers and
 contexts were varied slightly for tasks that were used in multiple interviews.

 Base-ten number concepts. Base-ten number concepts were assessed with five
 different tasks. In one task, students were given three bundles of 10 sticks and 5 loose
 sticks. The students took apart one bundle to determine that there were 10 sticks
 in the bundle, and they were told that the same number of sticks were in each bun-
 dle. They were then asked how many sticks there were altogether in the three bun-
 dles and the 5 loose sticks. Next, the interviewer covered up the 35 sticks, put out
 two more bundles of sticks, and asked how many sticks there were altogether. To
 demonstrate understanding of base-ten concepts on this task, students had to use
 the 10 groupings and respond without counting individual sticks.

 In the second task (from Kamii, 1989), the interviewer showed the students a card
 with the numeral 17 written on it and asked the students to count out 17 chips. The
 interviewer then pointed to the numeral 7 on the card and asked the students to show
 with the chips what that part meant. Then the interviewer pointed to the numeral
 1 and asked what that meant.

 The rest of the base-ten-number-concept tasks were set in the context of word prob-

 lems involving groups of 10. In one problem, students were asked to find the total
 number of pieces of gum in four packs of gum with 10 sticks of gum in each pack.
 In another problem, students were asked how many groups of 10 could be made from
 an initial set of 36. The final problem involved making teams of 10 each from a group
 of 241 children. Each problem was coded as demonstrating base-ten knowledge if
 students responded immediately on the basis of their knowledge of tens or counted
 by 10 without using counters or base-ten materials.

 The bundles task was used in the first two interviews, the multiplication word prob-

 lem in the first three, and the division problem involving 241 children in the last
 two. The other two tasks were used in all five interviews. In the first two interviews,

 students were classified as demonstrating knowledge of base-ten number concepts
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 if three out of four of their responses were coded as demonstrating base-ten knowl-
 edge; in the last three interviews the criterion was two out of three.

 Addition and subtraction problems. Straightforward, result-unknown addition and
 subtraction word problems involving joining, separating, and part-whole rela-
 tions with two-digit numbers were administered in each interview. The fourth and
 fifth interviews included three-digit part-whole and separating word problems. For
 most problems, children had a choice of materials including single counters, base-
 ten blocks, and paper and pencil. In order to increase the likelihood that children
 would use invented strategies if they were capable, two addition word problems and
 one subtraction word problem were administered with no materials or paper and
 pencil. The addition problems without materials were administered in every inter-
 view, and the subtraction problem without materials was administered in the last
 two interviews. The second through the fifth interviews also included two-digit addi-
 tion and subtraction computation exercises.

 For each task children's strategies were classified using a predetermined coding
 system. Coding categories included incorrect, modeling or counting by ones,
 modeling with tens materials, sequential invented strategies, combining-units
 invented strategies, compensating invented strategies, other invented strategies, algo-

 rithms, and buggy algorithms.

 Use of specific invented strategies. In the fourth interview, the interviewer demon-

 strated how a hypothetical child solved a three-digit addition problem using a
 sequential invented strategy. Children were asked to use the same strategy to solve
 another problem. To be counted correct, the strategy the child used had to be the same

 strategy the interviewer demonstrated. For example, a combining-units-separately strat-

 egy would not be counted as correct. In the fifth interview, the same procedure was

 used for a subtraction problem. In this case, the invented strategy involved a compensating

 strategy. The interviewer said that a girl named Sarah subtracted 65 - 19 by subtracting

 20 from 65 and then adding 1 back. The student was then asked to use the same strat-

 egy to subtract 53 - 28. To have a correct response, a student had to recognize that
 Sarah rounded the subtrahend up to a decade number to make subtraction easier. In

 the new problem the student had to round up to 30 and add 2 back on rather than 1.

 Extension problems. The fourth and fifth interviews included two problems
 that required some flexibility in calculating. Both problems involved three-digit num-

 bers, and children were given no materials or paper and pencil to use to figure out
 the answer. One problem involved finding how much of $4.00 would be left after
 a purchase of $1.86. The other was a missing-addend problem (A child has
 $398.00. How much more would he have to save to have $500.00?).

 Procedures

 The Grade 1 interview was conducted in January and February, the Grades 2 and
 3 fall interviews were conducted in October and November, and the Grades 2 and

 3 spring interviews were conducted in March and April. All students were interviewed
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 10 Invention and Understanding

 individually by trained interviewers in a quiet place removed from the classroom.
 The complete interview lasted approximately 1 hour and was administered over 2
 days. Each task was read to the child by the interviewer and reread as often as the

 child wanted. The child was given as much time as necessary to solve each prob-
 lem. Except as noted above, a variety of materials were available including indi-
 vidual counters, base-ten blocks, and paper and pencil. When the child had given
 the answer, the interviewer questioned the child about the strategy used if it was
 not obvious from observing the solution of the problem. The interviewer contin-
 ued probing until either he or she understood the solution or it was clear that the
 child was not going to provide additional information.
 The interviewer recorded the answer in predetermined coding categories

 when possible, and the interviews were audiotaped. In cases in which a child's
 response did not fit into a well-defined coding category, the interviewer recorded
 detailed notes on the child's solutions. On the basis of those notes and the audio-

 taped protocols of the child's explanations, new categories were constructed or
 the existing categories were expanded to include the new cases.

 RESULTS

 The pattern of development of children's use of invented strategies and stan-
 dard algorithms is summarized in Table 1. These data represent the percentage
 of students who used an invented strategy or standard algorithm in the given inter-

 view or in a previous interview. In either the Grade 1 interview or the Grade 2
 fall interview, before standard algorithms were discussed in most classes, 65%
 of the students used an invented addition strategy. An additional 23% started using

 invented strategies after algorithms were discussed, so that by the end of the study

 88% of the students had used invented addition strategies. The use of invented
 subtraction strategies lagged behind the use of invented addition strategies. Only
 15% of the students used invented subtraction strategies by the time of the Grade
 2 fall interview, and by the end of the study 32% of the students had never used
 an invented subtraction strategy in any interview.

 Table 1

 Cumulative Use of Invented Strategies and Standard Algorithms for Addition and Subtraction
 Problems (n = 82)

 Interview time Addition Subtraction

 Inventeda Algorithmb Inventeda Algorithmb
 Grade 1 29 2 0 0
 Grade 2 fall 65 20 15 4

 Grade 2 spring 74 79 27 50
 Grade 3 fall 82 90 55 66

 Grade 3 spring 88 99 68 92
 "aPercentage of students who used an invented strategy in a given interview or did so in a preceding
 interview.

 bPercentage of students who used an algorithm in a given interview or did so in a preceding
 interview.
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 Most students, however, did not use invented strategies in lieu of standard algo-
 rithms. By the end of the study, all but one student had used the standard addi-
 tion algorithm for at least one problem, and all but seven students had used the
 standard subtraction algorithm. Of the seven students who never used the stan-
 dard subtraction algorithm, four consistently used invented strategies successfully,
 and three could not use either an invented strategy or the algorithm. Not surprisingly,

 the largest jump in the use of standard addition and subtraction algorithms came
 between the Grade 2 fall and spring interviews, when the standard algorithms were
 introduced in most classes.

 Relating the Development of lnvented Strategies and Standard Algorithms

 A primary consideration in examining the role of invented strategies on the devel-

 opment of understanding of multidigit procedures is the sequence in which students
 started using invented strategies and standard algorithms. Our working hypothe-
 sis was that students who used invented strategies before or at the same time that
 they used standard algorithms would demonstrate higher levels of understanding
 than students who started out using algorithms. In order to examine this question,
 we clustered the students into five groups:

 1. One group was composed of 27 students who first used invented addition strate-

 gies and invented subtraction strategies in the same interview or in an interview pre-

 ceding the interview in which they first used the corresponding standard algorithms.
 This group was called the invented-strategy group.

 2. A second group was composed of 18 students who used algorithms before they
 used invented strategies for both addition and subtraction calculations. This group
 was labeled the algorithm group.

 3. A third group was composed of 33 students who first used an invented addi-
 tion strategy in the same interview or in an interview preceding the interview in which

 they first used the standard addition algorithm but used the subtraction algorithm
 before they used an invented subtraction strategy. This group was called the
 invented-addition-strategy group.

 4. The fourth group was composed of the students who first used an invented sub-

 traction strategy in the same interview or in an interview preceding the interview
 in which they first used the standard subtraction algorithm but used the addition algo-

 rithm before they used an invented addition strategy. Because only one student fell
 in this group it is not included in further discussion.

 5. The final group included three students who demonstrated limited ability to use
 either invented strategies or algorithms. None of these students ever used an invented

 strategy, and none ever successfully used the standard subtraction algorithm.

 Although the groups were defined by differences in the order in which students

 first used invented strategies and algorithms, the differences in initial strategy use
 were reflected in the use of invented strategies and algorithms throughout the study.
 Students in the invented-strategy group consistently relied more on invented
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 12 Invention and Understanding

 strategies and less on algorithms than students in the algorithm group. The invented-
 addition-strategy group tended to fall between the other two groups in the use of
 invented strategies and algorithms.
 In comparing the three groups' strategy use, it is informative to look at several

 critical times: (a) the beginning of second grade, before most students had started
 to use standard algorithms; (b) at the end of second grade, after the majority of stu-
 dents had started to use standard algorithms for at least some problems; and (c) dur-
 ing third grade, when almost all students used standard algorithms, particularly for
 problems with larger numbers. The percentages of students in each group using invented

 strategies and algorithms at these critical points are summarized in Table 2.

 Table 2

 Percentage of Students in Each Group Using Invented Strategies and Standard Algorithms (n = 82)

 Group

 Strategy/time Invented Invented addition Algorithm
 n = 27 n = 33 n= 18

 Used invented strategies
 before algorithmsa
 Addition 100 100 0
 Subtraction 100 0 0

 Used an invented strategy
 in some interview
 Addition 100 100 61
 Subtraction 100 65 28

 Used invented addition strategies
 By fall of Grade 2 89 79 0
 With three-digit addendsb 89 89 39

 Used algorithms by spring of Grade 2
 Addition 70 91 100
 Subtraction 33 67 61

 Used invented strategies in Grade 3
 interviews
 Never 0 24 50

 Only when materials not available 33 61 44
 With a variety of problems 67 15 6

 "aThe three groups are defined on the basis of these data.
 bUsed an invented strategy when shown a hypothetical student's sequential strategy for a three-digit
 problem and asked to use the same strategy for another problem.

 The invented-strategy group. The 27 students in the invented-strategy group not
 only used invented strategies before they used standard algorithms, they tended to
 use invented strategies relatively early. Of the students in this group, 89% used an
 invented addition strategy by the beginning of the second grade. The students in this
 group did not, however, use invented strategies to the exclusion of standard algo-
 rithms. By the end of the second grade, 70% of them used the standard addition algo-
 rithm, and they all used the standard addition algorithm for some problems by the
 end of the study. However, only 33% used the standard subtraction algorithm by
 the end of second grade, and 11% consistently used invented subtraction strategies
 and never used the standard subtraction algorithm in any interview.
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 Almost all the students in this group used the standard algorithm to add 2 three-
 digit numbers, but 89% of them used the appropriate invented strategy for the prob-
 lem in which they were shown a hypothetical student's sequential strategy for a three-digit

 problem and asked to use the same strategy for another problem. Furthermore, the
 students in this group did not abandon invented strategies as a strategy of choice
 once they learned algorithms. They all continued to use invented strategies through-
 out the 3 years of the study. In Grade 3, 33% of them used invented strategies only
 when paper and pencil were not available, but the other 67% chose to use invented
 strategies on other problems as well.

 The algorithm group. The algorithm group, which included 18 students, was almost
 the mirror image of the invented-strategy group. In this group, 94% did not use an
 invented strategy in any of the first three interviews and used the standard addition
 algorithm in the third interview in the spring of Grade 2. Not only did students in
 this group learn standard addition and subtraction algorithms before they ever used
 the corresponding invented strategies, they continued to rely primarily on algorithms.

 In this group, 39% never used an invented addition strategy throughout the study,
 and 72% never used an invented subtraction strategy. Generally the students in the
 group who did use invented strategies used them only if paper-and-pencil calcu-
 lations were not an option. Furthermore, 50% of the students did not use any invented
 strategies in either of the third-grade interviews, and 44% used them only when paper
 and pencil were not available. Only one student used invented strategies on other
 problems. Not only did students in this group not choose to use invented strategies,
 many of them were unable to use them when asked to do so. Only 39% of the stu-
 dents in this group used an invented strategy on the problem in which they were shown

 a hypothetical student's sequential strategy for a three-digit problem and asked to
 use the same strategy for another problem.

 The invented-addition-strategy group. The 33 students in the invented-addition-
 strategy group generally tended to use invented strategies less and algorithms
 more than students in the invented-strategy group. Most of the students used an invented

 addition strategy about as early as the students in the invented-strategy group, but
 they more readily abandoned invented strategies for the standard algorithm. In the
 fall of Grade 2, 79% used an invented addition strategy, and the rest did so by the
 spring. Although their use of invented addition strategies preceded or coincided with
 their use of the standard addition algorithm, 91% of the students in this group used
 the addition algorithm by the spring of Grade 2.

 The students in this group tended to rely more on the standard subtraction algorithm

 than on invented subtraction strategies. In the Grade 2 spring interview, 67% of the
 students used the standard subtraction algorithm; 35% of the students never used an
 invented subtraction strategy in any interview. By the Grade 3 interviews, the students

 in this group tended to use invented strategies only when paper and pencil were not
 available for calculation, if at all. In this group, 24% of the students used no invented
 strategies in either Grade 3 interview, and 61% used them only when paper and pen-
 cil were not available. Only 15% used them on other problems. All the students used
 the standard algorithm to calculate the sum of 2 three-digit numbers, but they were

This content downloaded from 128.59.122.178 on Fri, 15 Sep 2017 01:29:45 UTC
All use subject to http://about.jstor.org/terms



 14 Invention and Understanding

 as successful as the invented-strategy group in using an invented strategy for
 three-digit calculations if required to do so. When students were shown a hypothetical

 student's sequential strategy for a three-digit problem and asked to use the same strat-

 egy for another problem, 89% used the appropriate invented strategy.

 Knowledge of base-ten number concepts and performance on the extension
 problems. There were significant differences between the two invented-strategy groups

 and the algorithm group in knowledge of base-ten number concepts and performance
 on the extension problems (Table 3). The use of invented strategies by students in
 the two invented-strategy groups generally was supported by relatively early
 knowledge of base-ten number concepts: By the beginning of the second grade, sig-
 nificantly more students in both invented-strategy groups met the criteria for
 demonstrating knowledge of base-ten number concepts than was the case for stu-
 dents in the algorithm group. By the spring of the second grade, almost all the stu-
 dents in both invented-strategy groups had demonstrated knowledge of base-ten number
 concepts, whereas one third of the students in the algorithm group still had failed
 to do so. These differences also were significant. Both invented-strategy groups also
 had significantly higher performance on the extension problems than the algorithm
 group for both Grade 3 interviews.

 Table 3

 Performance of Each Group on Base-Ten and Extension Problems (n = 82)

 Group

 Problems/interview Invented Invented addition Algorithm

 Base-ten knowledgea
 Grade 2 fall 81* 85* 22

 Grade 2 spring 96* 97* 67

 Extension problemsb
 Grade 3 fall 1.15* .88* .17

 Grade 3 spring 1.37* 1.15* .44
 "aPercentage of students in each group meeting criteria for demonstrating knowledge of base-ten con-
 cepts by the Grade 2 fall interview. Dunn-Bonferroni planned comparisons were used to test three
 pairwise contrasts of proportions for significance. An a of .05 was split evenly among the three
 contrasts so that each contrast was tested at .017.

 bMean for each group on the extension problems. Dunn-Bonferroni planned comparisons were used
 to test three pairwise contrasts for means of significance. An a of .05 was split evenly among the
 three contrasts so that each contrast was tested at .017.

 "*Significantly different from the algorithm group (p < .05).

 Buggy algorithms. The percentage of students in each of the three groups using
 buggy algorithms is summarized in Table 4. Subtraction bugs were more fre-
 quent than addition bugs and appeared over a more sustained period of time. No
 student used a buggy addition algorithm in more than one interview, whereas over
 30% of the students did so for subtraction. There was relatively little difference in

 the use of addition bugs for the three groups, but significantly more students in the
 algorithm group used buggy procedures in more than one interview than was the
 case for the invented-strategy group. Although buggy subtraction algorithms were
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 less prevalent for the invented-strategy group, a number of students in all groups
 used buggy algorithms. In many cases bugs appeared in the same interview in which
 students used invented strategies on similar problems.

 Table 4

 Percentage of Students in Each Group Using Buggy Algorithms (n = 82)

 Group

 Buggy algorithm Invented Invented addition Algorithm
 Additiona 30 35 38

 Subtractionb
 None 48 26 22
 One 41 32 28
 More than one 11* 38 50

 "aPercentage of students in each group using a buggy algorithm on one or more problems.
 bPercentage of students in each group (a) never using a buggy algorithm, (b) using a buggy algo-
 rithm in one interview, or (c) using a buggy algorithm in more than one interview. Three pairwise
 contrasts compared the invented, invented-addition, and algorithm groups for no bugs, and three
 pairwise contrasts compared the three groups for bugs in more than one interview. Dunn-
 Bonferroni planned comparisons were used to test the six contrasts of proportions for significance.
 An a of .05 was split evenly among the six contrasts so that each contrast was tested at .008.
 "*Significantly different from the algorithm group (p < .05).

 Other Sequences of Development

 The above analyses are based on the sequence in which children first used
 invented strategies and algorithms. Other issues regarding sequences of develop-
 ment are of theoretical interest as well. One involves the question of whether chil-

 dren must develop a good understanding of base-ten number concepts before they
 can use invented strategies. Another involves the question of whether certain
 types of invented strategies emerge before others.

 Base-ten number concepts and invented strategies. The data summarized in Table

 3 suggest that the use of invented strategies is related to the development of base-

 ten number concepts. Children who use invented strategies develop knowledge of
 base-ten number concepts earlier than children who rely more on standard algorithms.

 These data do not, however, resolve the question of whether the use of invented strate-

 gies depends on prior knowledge of base-ten number concepts. In fact, many stu-
 dents used invented strategies before they demonstrated knowledge of base-ten number

 concepts on other tasks. Of the 82 children in the study, 23 used invented strate-
 gies at least one interview before they met the criteria for demonstrating knowledge

 of base-ten number concepts, 21 demonstrated knowledge of base-ten number con-

 cepts before they used an invented strategy, 33 students used invented strategies and

 demonstrated knowledge of base-ten number concepts concurrently, and 5 neither
 used invented strategies nor demonstrated knowledge of base-ten number concepts.

 Distinctions among invented strategies. A distinction is made in the literature between

 types of invented strategies and the underlying number concepts (Fuson, 1992a).
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 The distinction rests on whether multidigit numbers are conceived primarily in terms
 of collections of units of 10 or as chunks within the number-word sequence (10, 20,
 30; 16, 26, 36). A fully integrated conception of number includes both conceptions,
 but it is an open question which develops first and under what circumstances. A related

 question is whether one type of invented strategy emerges earlier than another: the com-

 bining-units-separately strategy, which is related to the collected-multiunit construct,

 or the sequential strategy, which is related to the sequence-multiunit construct.
 Our data suggest that there is no explicit sequence in which invented strategies

 develop for addition problems, and most children tended to use them somewhat inter-
 changeably. Of the 72 students who used invented addition strategies, 10 students
 used only sequential strategies, 15 used only combining-units-separately strategies,
 and 47 students used both types of strategies at one time or another. Fourteen of these

 47 students used a sequential strategy before they combined units separately, 22 com-
 bined units separately before they used a sequential strategy, and 11 used both strate-

 gies for the first time during the same interview.

 For subtraction, the picture is somewhat different. Relatively few students com-

 bined units separately for subtraction; no more than 4 students used this strategy
 on any problem. However, whereas virtually all addition invented strategies could
 be classified as either a combining-units-separately or sequential strategy, 10 stu-
 dents used compensating strategies for some subtraction problems. Although
 compensating strategies were used relatively infrequently, a number of students could

 use them if asked specifically. In the Grade 3 spring interview students were
 shown an example of a hypothetical student using a compensating strategy for a given

 subtraction problem and were asked to use the same strategy on a related problem.
 Under these conditions, 40 students used the compensating strategy.

 DISCUSSION

 We started this paper with the proposition that invented strategies could be
 taken as representing understanding of multidigit operations. We now return to that
 proposition and consider the evidence from this study that supports it. First, the evi-

 dence suggests that invented strategies are closely connected to other concepts that
 might be taken as representing basic understanding, in particular the development
 of fundamental base-ten number concepts. Students who initially used invented pro-
 cedures demonstrated knowledge of base-ten number concepts before students who
 relied primarily on algorithms. Second, invented strategies demonstrate a hallmark
 characteristic of understanding. Children who use them are able to use them flex-
 ibly to transfer their use to new situations as demonstrated by the fact that students
 in the invented-strategy groups were significantly more successful in solving the
 extension problems than students in the algorithm group. Finally, the students in
 the invented-strategy groups demonstrated significantly fewer systematic errors than

 students in the algorithm group. These results are consistent with the theoretical per-

 spective that supports the development of understanding before mastery of proce-
 dures (Hiebert, 1986; Hiebert & Carpenter, 1992).
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 It could be argued that the success of the invented-strategies groups in demonstrating

 knowledge of number concepts and solving extension problems simply reflected dif-
 ferences in ability between them and students in the algorithm group. Although that
 possibility cannot be discounted, that perspective is based on assumptions about how
 mathematical ability might be characterized. In practice, computational skill often
 is taken as the measure of mathematical ability. Students in the algorithm group actu-
 ally learned algorithmic procedures earlier than students in the invented-strategy group.

 The limitation was that most of them could not use their procedures flexibly to solve
 the extension problems. Even if ability is an issue, it could be argued that the
 strategies used by the students who had the most success in applying their knowl-
 edge flexibly should serve as a model for the learning of all students.

 Development of Underlying Base-Ten Number Concepts

 Although the development of base-ten number concepts and the ability to use invented

 strategies were related, a number of students used invented strategies before they
 demonstrated knowledge of base-ten number concepts on the problems used to mea-

 sure base-ten knowledge. A caveat is in order in interpreting these results. First, although

 the problems used to assess knowledge of base-ten number concepts are similar to
 problems frequently used for this purpose, they are not a perfect measure of base-
 ten number knowledge. A case can be made that the use of invented strategies itself
 is a measure of students' understanding of base-ten number concepts. It certainly
 appears to be a measure of students' ability to apply this knowledge. Most of the
 base-ten number-concept tasks seemed to involve concepts that students would need
 in order to use invented strategies successfully. Some students may have been more

 successful in using their base-ten knowledge in constructing invented strategies than
 in solving these tasks assessing base-ten knowledge. Some students may have been
 capable of using the strategies required to demonstrate knowledge of base-ten num-
 ber concepts but chose to use a more concrete strategy on those particular tasks.

 Whatever the case, it seems that at least some students are sufficiently tenuous
 in their response to problems assessing basic knowledge of base-ten number con-
 cepts that they do not appear to have mastered those concepts, but at the same time
 they are capable of using them in invented strategies for addition and subtraction
 problems. These results tend to support Fuson's (1990) contention that learning to
 add and subtract multidigit numbers can contribute to the development of base-ten
 number concepts.

 Student Errors

 Students in the invented-strategy group demonstrated a fundamental under-
 standing of base-ten number concepts and multidigit operations, and it is not sur-
 prising that they used fewer buggy algorithms than students in the other groups. It
 is striking, however, that a substantial number of students in all groups, including
 the invented-strategy group, used buggy algorithms for some problems in at least
 one interview. Fuson and Briars (1990) and Resnick and Omanson (1987) also found
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 that students who had developed understanding of multidigit operations occa-
 sionally still used buggy algorithms. Resnick and Omanson hypothesized that
 buggy procedures are constructed within the realm of procedural knowledge and
 can coexist with a reasonable level of understanding of relevant concepts. But Fuson
 and Briars found the bugs used by students who had a reasonable understanding of
 multidigit operations were not robust and often could be eliminated by simple counter

 suggestion. The fact that only three students in the invented-strategy group used buggy

 algorithms in more than one interview is consistent with this finding.

 Effects of Instruction

 The characterization of patterns of development observed in this study cannot be
 generalized to all students. Clearly, instruction has a significant impact on what stu-
 dents learn and what strategies they use. Students in classes in which algorithms
 are the focus and in which no opportunity is provided for discussion of alternative
 strategies would undoubtedly show markedly different patterns, as would students
 in classes in which students had no exposure to standard algorithms. We are not propos-

 ing that this study maps out an invariant pattern of development. It does, however,
 provide an existence proof that children can invent strategies for adding and sub-
 tracting, what that invention affords, and the role that different concepts may play
 in that development.

 Implications for Instruction

 Instruction was not a focus of this study, and the study says very little about how

 students actually learned to use invented strategies. Students in this study were given

 opportunities to use and discuss alternative strategies for solving all problems, and
 open discussion of alternative strategies characterizes other classrooms in which
 there is widespread use of invented strategies (Carpenter et al., 1994). We have con-

 ducted year-long case studies of instruction and learning in several first-grade class-

 rooms (Carpenter, Levi, Fennema, Ansell, & Franke, 1995). The findings of those
 studies suggest that invented strategies develop as abstractions of children's solu-
 tions using tens materials and that they are constructed over time as children dis-
 cuss and reflect upon their solutions with the tens materials.
 Although we have used the term invented strategy throughout this paper, we are

 not proposing that all children individually constructed their own invented strategies
 in a vacuum. From the case studies and from the classroom observations conducted

 in relation to a larger study of which this study was a part (Fennema et al., 1996), we
 know that is not the case. The strategies were constructed in a social context in which
 students shared strategies with one another. However, none of the teachers made an
 explicit effort to teach a particular invented strategy or gave any one invented strat-

 egy a place of prominence. Nevertheless, these strategies could be taught in the same
 way that standard algorithms are taught, and a case might be made that some version
 of these strategies would be an improvement over current standard algorithms in that
 the connections to fundamental base-ten concepts are more apparent.
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 Although we have no data regarding explicit instruction on specific invented strate-

 gies, we hypothesize that direct instruction could change the quality of children's
 understanding and use of invented strategies. If these strategies were the object of
 direct instruction, there would be a danger that children would learn them as rote
 procedures in much the way that they learn standard algorithms today. In this study,
 we saw relatively few conceptual errors in using invented strategies, whereas
 children exhibited a number of buggy procedures in using standard algorithms. The
 children in this study had the latitude to adapt their strategies to their level of under-

 standing of base-ten number concepts and to use invented strategies that made sense
 to them. This probably would not be the case if all children were expected to use
 the same strategy at the same time.

 Most of the students in this study were exposed to standard algorithms during the
 second and third grades. In working with their teachers, we remained neutral on whether

 they should teach standard algorithms. We proposed that invented strategies could
 be viewed as a means for developing understanding of multidigit concepts and pro-
 cedures or as an end in their own right. Because of various pressures, most of the
 second- and third-grade teachers opted for standard algorithms at some point. We
 are not proposing, however, that as the only choice. On the one hand, a strong case
 could be made for not teaching the algorithm at all, given the widespread availability
 of calculators for more complex calculations or calculations requiring speed and
 efficiency. On the other hand, the results of this study illustrate that invented
 strategies can provide a basis for developing understanding of multidigit operations,
 even when algorithms are taught.
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