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A Longitudinal Study of Invention
and Understanding in Children’s
Multidigit Addition and Subtraction

Thomas P. Carpenter, University of Wisconsin—Madison
Megan L. Franke, University of California at Los Angeles
Victoria R. Jacobs, California State University—San Marcos
Elizabeth Fennema, University of Wisconsin—Madison
Susan B. Empson, University of Texas at Austin

This 3-year longitudinal study investigated the development of 82 children’s understanding of
multidigit number concepts and operations in Grades 1-3. Students were individually interviewed
5 times on a variety of tasks involving base-ten number concepts and addition and subtraction
problems. The study provides an existence proof that children can invent strategies for adding
and subtracting and illustrates both what that invention affords and the role that different con-
cepts may play in that invention. About 90% of the students used invented strategies. Students
who used invented strategies before they learned standard algorithms demonstrated better
knowledge of base-ten number concepts and were more successful in extending their knowledge
to new situations than were students who initially learned standard algorithms.

An understanding of most fundamental mathematics concepts and skills devel-
ops over an extended period of time. Although cross-sectional studies can provide
snapshots of the development of these concepts at particular points in time, longitudinal
studies provide a more complete perspective; however, relatively few studies
have traced the development of fundamental mathematics concepts in children over
more than a single year. In this paper we report the results of a 3-year longitudinal
study of the growth of children’s understanding of addition and subtraction involv-
ing multidigit numbers. We focus particularly on children’s construction of
invented strategies for adding and subtracting multidigit numbers. The overarch-
ing goal of the study was to investigate the role that invented strategies may play
in developing an understanding of multidigit addition and subtraction concepts and
procedures. We trace the development and use of invented addition and subtrac-
tion strategies and examine the relation of these strategies to the development of
fundamental knowledge of base-ten number concepts and the use of standard
addition and subtraction algorithms. Finally, we consider what the use of invented
strategies affords by way of avoiding systematic errors and extending knowledge
of basic multidigit operations to new problem situations.

The research reported in this paper was supported in part by the National Science
Foundation under Grant Number MDR-8955346. The opinions expressed in this paper are those
of the authors and do not necessarily reflect the views of the National Science Foundation.
An earlier version of this paper was presented at the annual meeting of the American
Educational Research Association, New York, 1996.
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4 Invention and Understanding

BACKGROUND

There is mounting evidence that children both in and out of school can construct
methods for adding and subtracting multidigit numbers without explicit instruction
in specific procedures (Carpenter & Fennema, 1992; Carraher, Carraher, &
Schliemann, 1987; Cobb & Wheatley, 1988; Fuson & Burghardt, 1993; Hiebert &
Wearne, 1996; Kamii, 1989; Labinowicz, 1985; Nunes, 1992; Olivier, Murray, &
Human, 1990; Saxe, 1988). It is hypothesized that these invented strategies can play
a central role in making problem solving a focus of learning arithmetic procedures
and in helping students develop number sense and understanding of multidigit oper-
ations (Carpenter et al., 1994). Children employ a number of strategies for solving
multidigit problems at varying levels of sophistication. Many of these strategies are
constructed by children individually or collectively, without direct instruction by
the teacher (for a more complete discussion of children’s strategies, see Fuson et
al., 1997). Initially, children may use individual counters to model addition or sub-
traction operations. As they gain understanding of base-ten numbers, they begin to
use various materials representing tens rather than individual counters. Over time,
many children construct procedures for adding and subtracting multidigit numbers
without using physical materials of any kind. These are the strategies that are the
focus of this study, and we use the term invented strategy to refer to them.

Fuson et al. (1997) provided a comprehensive analysis of invented strategies chil-
dren use to solve multidigit addition and subtraction problems. The following pro-
tocols for finding the sum 38 + 26 illustrate distinctions among three primary classes
of invented strategies identified in this analysis:

Sequential: “Thirty and twenty is fifty, and the eight makes fifty-eight.
Then six more is sixty-four.”

Combining units separately: “Thirty and twenty is fifty, and eight and six is
fourteen. The ten from the fourteen makes sixty, so it’s sixty-four.”

Compensating: “That’s like forty and twenty-four, and that’s sixty-four.”

In the sequential strategy, the sum is kept as a running total. In the combining-units-
separately strategy, the tens and ones are added separately, then combined. In the
compensating strategy, the numbers are adjusted to simplify the calculation.
Similar strategies are used for subtraction, although they are somewhat more dif-
ficult to implement. The following examples illustrate these strategies for the dif-
ference 62 —28:

Sequential: “Sixty take away twenty is forty. Then put back the two; that’s

forty-two. Now take away the eight from the forty-two. Take away the two,

that’s forty, and then six more makes thirty-four.”

Combining units separately: ““Sixty take away twenty is forty. You can’t
take eight from two. If you take two from the two, you still have six more to
take away. Now take the six from the forty; that’s thirty-four.”

Compensating: “Sixty-two take away thirty is thirty-two, but we’re taking
away twenty-eight so it’s two more. It’s thirty-four.”

This content downloaded from 128.59.122.178 on Fri, 15 Sep 2017 01:29:45 UTC
All use subject to http://about.jstor.org/terms



T. P. Carpenter, M. L. Franke, V. R. Jacobs, E. Fennema, and S. B. Empson 5

Both standard algorithms and invented strategies reduce a complex procedure to
simpler components that can be operated on using available knowledge or proce-
dures. For example, most procedures for adding or subtracting multidigit numbers
essentially reduce the calculation to a series of sums or differences of single-digit
numbers (or corresponding multiples of 10, 100, etc.). There are, however, some
fundamental differences between standard algorithms and the strategies that chil-
dren construct to solve multidigit problems. Standard algorithms have evolved over
centuries for efficient, accurate calculation. For the most part, these algorithms are
quite far removed from their conceptual underpinnings. Invented strategies, on the
other hand, generally are derived directly from the underlying multidigit concepts.
For example, with standard addition and subtraction algorithms, numerals are
aligned so that the ones, tens, hundreds, and larger digits can be added in columns.
But in the addition of columns, no reference is made to the fact that the addition involves
the same unit (ones, tens, hundreds, etc.); one simply adds numbers in a column.
Most invented strategies, on the other hand, specifically label the units being
combined. For example, in the above addition examples, the invented strategies are
based on adding 30 and 20 or 3 tens and 2 tens rather than adding two numbers that
appear in the same column.'

Sequence of Development of Major Concepts and Procedures

Longitudinal studies afford the opportunity to trace the sequence in which major
concepts and procedures develop. Although there are alternative perspectives,
most current theoretical arguments support the development of conceptual knowl-
edge before students master algorithmic procedures (Hiebert, 1986; Hiebert & Carpenter,
1992). If invented strategies provide a basis for understanding multidigit procedures,
it might be expected that there would be critical differences between students who
used invented strategies before they learned standard algorithms and students
who initially learned standard algorithms without first constructing invented strate-
gies. A major focus of our analysis deals with distinctions between students who
used standard algorithms before using invented strategies and students who used
invented strategies before or concurrently with their use of standard algorithms.

Development of base-ten number concepts. The sequence in which students develop
an understanding of base-ten number concepts and use invented strategies is also
of theoretical and practical interest. Because invented strategies are based on
base-ten number concepts, it might be expected that students’ use of invented strate-
gies would be related to understanding of these concepts, but there is an ongoing
debate whether children should master fundamental base-ten number concepts before
they learn procedures for adding and subtracting multidigit numbers or whether learn-
ing of these concepts and procedures might be more integrated (Baroody, 1990; Fuson,
1990). The debate centers around the level of understanding of base-ten concepts

'Under certain instructional conditions, children also construct variations of written algorithms
involving base-ten number concepts (Fuson & Burghardt, 1993).

This content downloaded from 128.59.122.178 on Fri, 15 Sep 2017 01:29:45 UTC
All use subject to http://about.jstor.org/terms



6 Invention and Understanding

that is a prerequisite. One perspective is that understanding multidigit procedures
depends on a reasonably well-developed understanding of base-ten number con-
cepts; the other is that learning procedures for adding and subtracting multidigit num-
bers provides a context for motivating and supporting the development of base-ten
number concepts. Given that invented strategies are based on children’s understanding
of base-ten concepts, the argument can be made that children need to understand
base-ten number concepts before they can invent their own procedures for adding
and subtracting multidigit numbers. On the other hand, because grouping by tens
is made so explicit in invented strategies, the use of invented strategies may pro-
vide a context for furthering the development of base-ten understanding.

Hiebert and Wearne (1996) found that understanding of base-ten number con-
cepts and the use of appropriate multidigit addition and subtraction strategies
were related. Children who demonstrated understanding of base-ten number con-
cepts were more successful in inventing and modifying strategies for adding and
subtracting multidigit numbers than children who demonstrated little or no under-
standing of base-ten number concepts. Their study did not, however, specifically
examine whether students developed understanding of base-ten number concepts
before they used invented strategies or whether children’s multidigit procedures devel-
oped concurrently with their base-ten number concepts.

Consequences of Using Invented Strategies

A primary goal of this study was to examine the role that invented strategies play
in developing understanding of multidigit addition and subtraction. One important
feature of knowledge that is acquired with understanding is that it can be extended
to solve unfamiliar or nonroutine problems more readily than strictly procedural knowl-
edge (Hiebert, 1986; Hiebert & Carpenter, 1992; Hiebert & Wearne, 1996). If invented
strategies play a central role in the development of understanding of multidigit pro-
cedures, it would be expected that the development of invented strategies would be
related to children’s ability to apply their multidigit knowledge flexibly to problems
that required more than the routine application of established procedures.

It also might be expected that the use of invented strategies would eliminate or
at least reduce the occurrence of systematic errors based strictly on procedural appli-
cations of symbolic procedures. A substantial body of research has focused on stu-
dents’ systematic errors in executing addition and subtraction algorithms (Brown
& VanLehn, 1982; VanLehn, 1986). One hypothesis is that these systematic errors
or buggy algorithms, as they frequently are called, are a result of students relying
exclusively on rote manipulations of symbols, and that developing understanding
of multidigit procedures would eliminate most buggy algorithms (Fuson, 1992a, 1992b;
Resnick, 1982). If invented strategies provide a basis for developing understand-
ing of multidigit procedures, it follows that students who use invented strategies before
they learn standard algorithms should develop fewer buggy algorithms than students
who start out using standard algorithms.
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METHOD

Eighty-two students were individually interviewed in the winter of first grade and
in the fall and spring of second and third grades on a variety of tasks involving base-
ten number concepts, addition and subtraction word problems, addition and sub-
traction computation problems, and some problems that required students to
extend their knowledge of base-ten number concepts and multidigit addition and
subtraction procedures.

Sample

The initial sample for the study consisted of 120 students in three schools. Six boys
and six girls were randomly selected from each of the 10 first-grade classes in the
three schools. One fourth of the students in one school were lost to the study in a bound-
ary change, and there was some natural attrition as students moved during the 3 years
of the study. The final sample consisted of the 82 students who participated in all
five interviews. Over the 3 years of the study, the students were distributed among
the classes of 27 teachers: 10 in the first grade, 8 in the second, and 9 in the third.

The three schools served somewhat different populations. One school served a
predominately rural, White (99%) population. During the first year of the study, 412
were enrolled in the school; 4% of the students received free or reduced-price lunches.
The second school had a population of 273 students; 70% of the students were White,
and 26% received free or reduced-price lunches. The third school enrolled 541 stu-
dents; 91% of the students were White, and 8% received free or reduced-price lunches.

Instruction

All students in the study were in classes of teachers who were participating in a
3-year intervention study designed to help teachers understand and build on chil-
dren’s mathematical thinking (Carpenter, Fennema, & Franke, 1996; Fennema et
al.,1996). The emphasis of the program was on how children’s intuitive mathematical
ideas emerge to form the basis for the development of more formal concepts and
procedures. Teachers learned about how children solve problems using base-ten mate-
rials and the various invented abstract strategies children often construct.

No curricular materials or specific guidelines for instruction were provided, and
teachers had latitude to plan their own instruction. As a consequence, there was vari-
ation in the instruction of the teachers. However, several features characterized instruc-
tion in most classrooms (Fennema et al., 1996). Word problems were used
extensively. Students generally were given opportunities to solve problems using
a variety of strategies, and alternative strategies were discussed with the whole class
or in small groups.

The first-grade teachers provided students opportunities to solve addition and sub-
traction word problems involving regrouping of two- and, in some cases, three-digit
numbers. Tens blocks and other base-ten materials were available, and most children
initially used them to solve multidigit problems. By the end of the year, some chil-
dren in each of the classes used and discussed invented strategies, but most children
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8 Invention and Understanding

continued to use counters and base-ten materials in solving multidigit problems. First-
grade teachers generally did not formally teach standard addition or subtraction algo-
rithms. Second-grade teachers initially provided children opportunities to solve problems
using base-ten materials and to discuss a variety of procedures. At the time of the
Grade 2 fall interview, standard algorithms had not been a focus of instruction. By
the spring interview, almost all second-grade students had been exposed to the stan-
dard addition and subtraction algorithms. Although most third-grade teachers pro-
vided opportunities for students to use and discuss a variety of strategies, standard
algorithms played a prominent role in students’ calculations.

Interview Tasks

The interview tasks assessed (a) students’ knowledge of base-ten number con-
cepts, (b) their strategies for solving addition and subtraction word problems and
computation exercises, (c) their abilities to use specific invented strategies, and (d)
their abilities to extend and use addition and subtraction procedures flexibly. Not
all tasks were administered in each interview. Easier tasks from the earlier inter-
views were replaced by more difficult tasks in later interviews. Numbers and
contexts were varied slightly for tasks that were used in multiple interviews.

Base-ten number concepts. Base-ten number concepts were assessed with five
different tasks. In one task, students were given three bundles of 10 sticks and 5 loose
sticks. The students took apart one bundle to determine that there were 10 sticks
in the bundle, and they were told that the same number of sticks were in each bun-
dle. They were then asked how many sticks there were altogether in the three bun-
dles and the 5 loose sticks. Next, the interviewer covered up the 35 sticks, put out
two more bundles of sticks, and asked how many sticks there were altogether. To
demonstrate understanding of base-ten concepts on this task, students had to use
the 10 groupings and respond without counting individual sticks.

In the second task (from Kamii, 1989), the interviewer showed the students a card
with the numeral 17 written on it and asked the students to count out 17 chips. The
interviewer then pointed to the numeral 7 on the card and asked the students to show
with the chips what that part meant. Then the interviewer pointed to the numeral
1 and asked what that meant.

The rest of the base-ten-number-concept tasks were set in the context of word prob-
lems involving groups of 10. In one problem, students were asked to find the total
number of pieces of gum in four packs of gum with 10 sticks of gum in each pack.
In another problem, students were asked how many groups of 10 could be made from
an initial set of 36. The final problem involved making teams of 10 each from a group
of 241 children. Each problem was coded as demonstrating base-ten knowledge if
students responded immediately on the basis of their knowledge of tens or counted
by 10 without using counters or base-ten materials.

The bundles task was used in the first two interviews, the multiplication word prob-
lem in the first three, and the division problem involving 241 children in the last
two. The other two tasks were used in all five interviews. In the first two interviews,
students were classified as demonstrating knowledge of base-ten number concepts
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T. P. Carpenter, M. L. Franke, V. R. Jacobs, E. Fennema, and S. B. Empson 9

if three out of four of their responses were coded as demonstrating base-ten knowl-
edge; in the last three interviews the criterion was two out of three.

Addition and subtraction problems. Straightforward, result-unknown addition and
subtraction word problems involving joining, separating, and part-whole rela-
tions with two-digit numbers were administered in each interview. The fourth and
fifth interviews included three-digit part-whole and separating word problems. For
most problems, children had a choice of materials including single counters, base-
ten blocks, and paper and pencil. In order to increase the likelihood that children
would use invented strategies if they were capable, two addition word problems and
one subtraction word problem were administered with no materials or paper and
pencil. The addition problems without materials were administered in every inter-
view, and the subtraction problem without materials was administered in the last
two interviews. The second through the fifth interviews also included two-digit addi-
tion and subtraction computation exercises.

For each task children’s strategies were classified using a predetermined coding
system. Coding categories included incorrect, modeling or counting by ones,
modeling with tens materials, sequential invented strategies, combining-units
invented strategies, compensating invented strategies, other invented strategies, algo-
rithms, and buggy algorithms.

Use of specific invented strategies. In the fourth interview, the interviewer demon-
strated how a hypothetical child solved a three-digit addition problem using a
sequential invented strategy. Children were asked to use the same strategy to solve
another problem. To be counted correct, the strategy the child used had to be the same
strategy the interviewer demonstrated. For example, a combining-units-separately strat-
egy would not be counted as correct. In the fifth interview, the same procedure was
used for a subtraction problem. In this case, the invented strategy involved a compensating
strategy. The interviewer said that a girl named Sarah subtracted 65 — 19 by subtracting
20 from 65 and then adding 1 back. The student was then asked to use the same strat-
egy to subtract 53 — 28. To have a correct response, a student had to recognize that
Sarah rounded the subtrahend up to a decade number to make subtraction easier. In
the new problem the student had to round up to 30 and add 2 back on rather than 1.

Extension problems. The fourth and fifth interviews included two problems
that required some flexibility in calculating. Both problems involved three-digit num-
bers, and children were given no materials or paper and pencil to use to figure out
the answer. One problem involved finding how much of $4.00 would be left after
a purchase of $1.86. The other was a missing-addend problem (A child has
$398.00. How much more would he have to save to have $500.007).

Procedures

The Grade 1 interview was conducted in January and February, the Grades 2 and
3 fall interviews were conducted in October and November, and the Grades 2 and
3 spring interviews were conducted in March and April. All students were interviewed
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10 Invention and Understanding

individually by trained interviewers in a quiet place removed from the classroom.
The complete interview lasted approximately 1 hour and was administered over 2
days. Each task was read to the child by the interviewer and reread as often as the
child wanted. The child was given as much time as necessary to solve each prob-
lem. Except as noted above, a variety of materials were available including indi-
vidual counters, base-ten blocks, and paper and pencil. When the child had given
the answer, the interviewer questioned the child about the strategy used if it was
not obvious from observing the solution of the problem. The interviewer contin-
ued probing until either he or she understood the solution or it was clear that the
child was not going to provide additional information.

The interviewer recorded the answer in predetermined coding categories
when possible, and the interviews were audiotaped. In cases in which a child’s
response did not fit into a well-defined coding category, the interviewer recorded
detailed notes on the child’s solutions. On the basis of those notes and the audio-
taped protocols of the child’s explanations, new categories were constructed or
the existing categories were expanded to include the new cases.

RESULTS

The pattern of development of children’s use of invented strategies and stan-
dard algorithms is summarized in Table 1. These data represent the percentage
of students who used an invented strategy or standard algorithm in the given inter-
view or in a previous interview. In either the Grade 1 interview or the Grade 2
fall interview, before standard algorithms were discussed in most classes, 65%
of the students used an invented addition strategy. An additional 23% started using
invented strategies after algorithms were discussed, so that by the end of the study
88% of the students had used invented addition strategies. The use of invented
subtraction strategies lagged behind the use of invented addition strategies. Only
15% of the students used invented subtraction strategies by the time of the Grade
2 fall interview, and by the end of the study 32% of the students had never used
an invented subtraction strategy in any interview.

Table 1
Cumulative Use of Invented Strategies and Standard Algorithms for Addition and Subtraction
Problems (n = 82)

Interview time Addition Subtraction

Invented® Algorithm® Invented* Algorithm®
Grade 1 29 2 0 0
Grade 2 fall 65 20 15 4
Grade 2 spring 74 79 27 50
Grade 3 fall 82 90 55 66
Grade 3 spring 88 99 68 92

*Percentage of students who used an invented strategy in a given interview or did so in a preceding
interview.

®Percentage of students who used an algorithm in a given interview or did so in a preceding
interview.
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Most students, however, did not use invented strategies in lieu of standard algo-
rithms. By the end of the study, all but one student had used the standard addi-
tion algorithm for at least one problem, and all but seven students had used the
standard subtraction algorithm. Of the seven students who never used the stan-
dard subtraction algorithm, four consistently used invented strategies successfully,
and three could not use either an invented strategy or the algorithm. Not surprisingly,
the largest jump in the use of standard addition and subtraction algorithms came
between the Grade 2 fall and spring interviews, when the standard algorithms were
introduced in most classes.

Relating the Development of Invented Strategies and Standard Algorithms

A primary consideration in examining the role of invented strategies on the devel-
opment of understanding of multidigit procedures is the sequence in which students
started using invented strategies and standard algorithms. Our working hypothe-
sis was that students who used invented strategies before or at the same time that
they used standard algorithms would demonstrate higher levels of understanding
than students who started out using algorithms. In order to examine this question,
we clustered the students into five groups:

1. One group was composed of 27 students who first used invented addition strate-
gies and invented subtraction strategies in the same interview or in an interview pre-
ceding the interview in which they first used the corresponding standard algorithms.
This group was called the invented-strategy group.

2. A second group was composed of 18 students who used algorithms before they
used invented strategies for both addition and subtraction calculations. This group
was labeled the algorithm group.

3. A third group was composed of 33 students who first used an invented addi-
tion strategy in the same interview or in an interview preceding the interview in which
they first used the standard addition algorithm but used the subtraction algorithm
before they used an invented subtraction strategy. This group was called the
invented-addition-strategy group.

4. The fourth group was composed of the students who first used an invented sub-
traction strategy in the same interview or in an interview preceding the interview
in which they first used the standard subtraction algorithm but used the addition algo-
rithm before they used an invented addition strategy. Because only one student fell
in this group it is not included in further discussion.

5. The final group included three students who demonstrated limited ability to use
either invented strategies or algorithms. None of these students ever used an invented
strategy, and none ever successfully used the standard subtraction algorithm.

Although the groups were defined by differences in the order in which students
first used invented strategies and algorithms, the differences in initial strategy use
were reflected in the use of invented strategies and algorithms throughout the study.
Students in the invented-strategy group consistently relied more on invented
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12 Invention and Understanding

strategies and less on algorithms than students in the algorithm group. The invented-
addition-strategy group tended to fall between the other two groups in the use of
invented strategies and algorithms.

In comparing the three groups’ strategy use, it is informative to look at several
critical times: (a) the beginning of second grade, before most students had started
to use standard algorithms; (b) at the end of second grade, after the majority of stu-
dents had started to use standard algorithms for at least some problems; and (c) dur-
ing third grade, when almost all students used standard algorithms, particularly for
problems with larger numbers. The percentages of students in each group using invented
strategies and algorithms at these critical points are summarized in Table 2.

Table 2
Percentage of Students in Each Group Using Invented Strategies and Standard Algorithms (n = 82)
Group
Strategy/time Invented Invented addition Algorithm
n=27 n=33 n=18
Used invented strategies
before algorithms®
Addition 100 100 0
Subtraction 100 0 0
Used an invented strategy
in some interview
Addition 100 100 61
Subtraction 100 65 28
Used invented addition strategies
By fall of Grade 2 89 79 0
With three-digit addends” 89 89 39
Used algorithms by spring of Grade 2
Addition 70 91 100
Subtraction 33 67 61
Used invented strategies in Grade 3
interviews
Never 0 24 50
Only when materials not available 33 61 44
With a variety of problems 67 15 6

“The three groups are defined on the basis of these data.
®Used an invented strategy when shown a hypothetical student’s sequential strategy for a three-digit
problem and asked to use the same strategy for another problem.

The invented-strategy group. The 27 students in the invented-strategy group not
only used invented strategies before they used standard algorithms, they tended to
use invented strategies relatively early. Of the students in this group, 89% used an
invented addition strategy by the beginning of the second grade. The students in this
group did not, however, use invented strategies to the exclusion of standard algo-
rithms. By the end of the second grade, 70% of them used the standard addition algo-
rithm, and they all used the standard addition algorithm for some problems by the
end of the study. However, only 33% used the standard subtraction algorithm by
the end of second grade, and 11% consistently used invented subtraction strategies
and never used the standard subtraction algorithm in any interview.
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Almost all the students in this group used the standard algorithm to add 2 three-
digit numbers, but 89% of them used the appropriate invented strategy for the prob-
lem in which they were shown a hypothetical student’s sequential strategy for a three-digit
problem and asked to use the same strategy for another problem. Furthermore, the
students in this group did not abandon invented strategies as a strategy of choice
once they learned algorithms. They all continued to use invented strategies through-
out the 3 years of the study. In Grade 3, 33% of them used invented strategies only
when paper and pencil were not available, but the other 67% chose to use invented
strategies on other problems as well.

The algorithm group. The algorithm group, which included 18 students, was almost
the mirror image of the invented-strategy group. In this group, 94% did not use an
invented strategy in any of the first three interviews and used the standard addition
algorithm in the third interview in the spring of Grade 2. Not only did students in
this group learn standard addition and subtraction algorithms before they ever used
the corresponding invented strategies, they continued to rely primarily on algorithms.
In this group, 39% never used an invented addition strategy throughout the study,
and 72% never used an invented subtraction strategy. Generally the students in the
group who did use invented strategies used them only if paper-and-pencil calcu-
lations were not an option. Furthermore, 50% of the students did not use any invented
strategies in either of the third-grade interviews, and 44% used them only when paper
and pencil were not available. Only one student used invented strategies on other
problems. Not only did students in this group not choose to use invented strategies,
many of them were unable to use them when asked to do so. Only 39% of the stu-
dents in this group used an invented strategy on the problem in which they were shown
a hypothetical student’s sequential strategy for a three-digit problem and asked to
use the same strategy for another problem.

The invented-addition-strategy group. The 33 students in the invented-addition-
strategy group generally tended to use invented strategies less and algorithms
more than students in the invented-strategy group. Most of the students used an invented
addition strategy about as early as the students in the invented-strategy group, but
they more readily abandoned invented strategies for the standard algorithm. In the
fall of Grade 2, 79% used an invented addition strategy, and the rest did so by the
spring. Although their use of invented addition strategies preceded or coincided with
their use of the standard addition algorithm, 91% of the students in this group used
the addition algorithm by the spring of Grade 2.

The students in this group tended to rely more on the standard subtraction algorithm
than on invented subtraction strategies. In the Grade 2 spring interview, 67% of the
students used the standard subtraction algorithm; 35% of the students never used an
invented subtraction strategy in any interview. By the Grade 3 interviews, the students
in this group tended to use invented strategies only when paper and pencil were not
available for calculation, if at all. In this group, 24% of the students used no invented
strategies in either Grade 3 interview, and 61% used them only when paper and pen-
cil were not available. Only 15% used them on other problems. All the students used
the standard algorithm to calculate the sum of 2 three-digit numbers, but they were
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14 Invention and Understanding

as successful as the invented-strategy group in using an invented strategy for
three-digit calculations if required to do so. When students were shown a hypothetical
student’s sequential strategy for a three-digit problem and asked to use the same strat-
egy for another problem, 89% used the appropriate invented strategy.

Knowledge of base-ten number concepts and performance on the extension
problems. There were significant differences between the two invented-strategy groups
and the algorithm group in knowledge of base-ten number concepts and performance
on the extension problems (Table 3). The use of invented strategies by students in
the two invented-strategy groups generally was supported by relatively early
knowledge of base-ten number concepts: By the beginning of the second grade, sig-
nificantly more students in both invented-strategy groups met the criteria for
demonstrating knowledge of base-ten number concepts than was the case for stu-
dents in the algorithm group. By the spring of the second grade, almost all the stu-
dents in both invented-strategy groups had demonstrated knowledge of base-ten number
concepts, whereas one third of the students in the algorithm group still had failed
to do so. These differences also were significant. Both invented-strategy groups also
had significantly higher performance on the extension problems than the algorithm
group for both Grade 3 interviews.

Table 3
Performance of Each Group on Base-Ten and Extension Problems (n = 82)
Group
Problems/interview Invented Invented addition Algorithm
Base-ten knowledge*®
Grade 2 fall 81* 85* 22
Grade 2 spring 96* 97* 67
Extension problems®
Grade 3 fall 1.15% .88* 17
Grade 3 spring 1.37* 1.15% 44

*Percentage of students in each group meeting criteria for demonstrating knowledge of base-ten con-
cepts by the Grade 2 fall interview. Dunn-Bonferroni planned comparisons were used to test three
pairwise contrasts of proportions for significance. An o of .05 was split evenly among the three
contrasts so that each contrast was tested at .017.

"Mean for each group on the extension problems. Dunn-Bonferroni planned comparisons were used
to test three pairwise contrasts for means of significance. An o of .05 was split evenly among the
three contrasts so that each contrast was tested at .017.

*Significantly different from the algorithm group (p < .05).

Buggy algorithms. The percentage of students in each of the three groups using
buggy algorithms is summarized in Table 4. Subtraction bugs were more fre-
quent than addition bugs and appeared over a more sustained period of time. No
student used a buggy addition algorithm in more than one interview, whereas over
30% of the students did so for subtraction. There was relatively little difference in
the use of addition bugs for the three groups, but significantly more students in the
algorithm group used buggy procedures in more than one interview than was the
case for the invented-strategy group. Although buggy subtraction algorithms were
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less prevalent for the invented-strategy group, a number of students in all groups
used buggy algorithms. In many cases bugs appeared in the same interview in which
students used invented strategies on similar problems.

Table 4
Percentage of Students in Each Group Using Buggy Algorithms (n = 82)
Group
Buggy algorithm Invented Invented addition Algorithm
Addition® 30 35 38
Subtraction®
None 48 26 22
One 41 32 28
More than one 11* 38 50

Percentage of students in each group using a buggy algorithm on one or more problems.
Percentage of students in each group (a) never using a buggy algorithm, (b) using a buggy algo-
rithm in one interview, or (c) using a buggy algorithm in more than one interview. Three pairwise
contrasts compared the invented, invented-addition, and algorithm groups for no bugs, and three
pairwise contrasts compared the three groups for bugs in more than one interview. Dunn-
Bonferroni planned comparisons were used to test the six contrasts of proportions for significance.
An o of .05 was split evenly among the six contrasts so that each contrast was tested at .008.

*Significantly different from the algorithm group (p < .05).

Other Sequences of Development

The above analyses are based on the sequence in which children first used
invented strategies and algorithms. Other issues regarding sequences of develop-
ment are of theoretical interest as well. One involves the question of whether chil-
dren must develop a good understanding of base-ten number concepts before they
can use invented strategies. Another involves the question of whether certain
types of invented strategies emerge before others.

Base-ten number concepts and invented strategies. The data summarized in Table
3 suggest that the use of invented strategies is related to the development of base-
ten number concepts. Children who use invented strategies develop knowledge of
base-ten number concepts earlier than children who rely more on standard algorithms.
These data do not, however, resolve the question of whether the use of invented strate-
gies depends on prior knowledge of base-ten number concepts. In fact, many stu-
dents used invented strategies before they demonstrated knowledge of base-ten number
concepts on other tasks. Of the 82 children in the study, 23 used invented strate-
gies at least one interview before they met the criteria for demonstrating knowledge
of base-ten number concepts, 21 demonstrated knowledge of base-ten number con-
cepts before they used an invented strategy, 33 students used invented strategies and
demonstrated knowledge of base-ten number concepts concurrently, and 5 neither
used invented strategies nor demonstrated knowledge of base-ten number concepts.

Distinctions among invented strategies. A distinction is made in the literature between
types of invented strategies and the underlying number concepts (Fuson, 1992a).

This content downloaded from 128.59.122.178 on Fri, 15 Sep 2017 01:29:45 UTC
All use subject to http://about.jstor.org/terms



16 Invention and Understanding

The distinction rests on whether multidigit numbers are conceived primarily in terms
of collections of units of 10 or as chunks within the number-word sequence (10, 20,
30; 16, 26, 36). A fully integrated conception of number includes both conceptions,
but it is an open question which develops first and under what circumstances. A related
question is whether one type of invented strategy emerges earlier than another: the com-
bining-units-separately strategy, which is related to the collected-multiunit construct,
or the sequential strategy, which is related to the sequence-multiunit construct.

Our data suggest that there is no explicit sequence in which invented strategies
develop for addition problems, and most children tended to use them somewhat inter-
changeably. Of the 72 students who used invented addition strategies, 10 students
used only sequential strategies, 15 used only combining-units-separately strategies,
and 47 students used both types of strategies at one time or another. Fourteen of these
47 students used a sequential strategy before they combined units separately, 22 com-
bined units separately before they used a sequential strategy, and 11 used both strate-
gies for the first time during the same interview.

For subtraction, the picture is somewhat different. Relatively few students com-
bined units separately for subtraction; no more than 4 students used this strategy
on any problem. However, whereas virtually all addition invented strategies could
be classified as either a combining-units-separately or sequential strategy, 10 stu-
dents used compensating strategies for some subtraction problems. Although
compensating strategies were used relatively infrequently, a number of students could
use them if asked specifically. In the Grade 3 spring interview students were
shown an example of a hypothetical student using a compensating strategy for a given
subtraction problem and were asked to use the same strategy on a related problem.
Under these conditions, 40 students used the compensating strategy.

DISCUSSION

We started this paper with the proposition that invented strategies could be
taken as representing understanding of multidigit operations. We now return to that
proposition and consider the evidence from this study that supports it. First, the evi-
dence suggests that invented strategies are closely connected to other concepts that
might be taken as representing basic understanding, in particular the development
of fundamental base-ten number concepts. Students who initially used invented pro-
cedures demonstrated knowledge of base-ten number concepts before students who
relied primarily on algorithms. Second, invented strategies demonstrate a hallmark
characteristic of understanding. Children who use them are able to use them flex-
ibly to transfer their use to new situations as demonstrated by the fact that students
in the invented-strategy groups were significantly more successful in solving the
extension problems than students in the algorithm group. Finally, the students in
the invented-strategy groups demonstrated significantly fewer systematic errors than
students in the algorithm group. These results are consistent with the theoretical per-
spective that supports the development of understanding before mastery of proce-
dures (Hiebert, 1986; Hiebert & Carpenter, 1992).
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It could be argued that the success of the invented-strategies groups in demonstrating
knowledge of number concepts and solving extension problems simply reflected dif-
ferences in ability between them and students in the algorithm group. Although that
possibility cannot be discounted, that perspective is based on assumptions about how
mathematical ability might be characterized. In practice, computational skill often
is taken as the measure of mathematical ability. Students in the algorithm group actu-
ally learned algorithmic procedures earlier than students in the invented-strategy group.
The limitation was that most of them could not use their procedures flexibly to solve
the extension problems. Even if ability is an issue, it could be argued that the
strategies used by the students who had the most success in applying their knowl-
edge flexibly should serve as a model for the learning of all students.

Development of Underlying Base-Ten Number Concepts

Although the development of base-ten number concepts and the ability to use invented
strategies were related, a number of students used invented strategies before they
demonstrated knowledge of base-ten number concepts on the problems used to mea-
sure base-ten knowledge. A caveat is in order in interpreting these results. First, although
the problems used to assess knowledge of base-ten number concepts are similar to
problems frequently used for this purpose, they are not a perfect measure of base-
ten number knowledge. A case can be made that the use of invented strategies itself
is a measure of students’ understanding of base-ten number concepts. It certainly
appears to be a measure of students’ ability to apply this knowledge. Most of the
base-ten number-concept tasks seemed to involve concepts that students would need
in order to use invented strategies successfully. Some students may have been more
successful in using their base-ten knowledge in constructing invented strategies than
in solving these tasks assessing base-ten knowledge. Some students may have been
capable of using the strategies required to demonstrate knowledge of base-ten num-
ber concepts but chose to use a more concrete strategy on those particular tasks.

Whatever the case, it seems that at least some students are sufficiently tenuous
in their response to problems assessing basic knowledge of base-ten number con-
cepts that they do not appear to have mastered those concepts, but at the same time
they are capable of using them in invented strategies for addition and subtraction
problems. These results tend to support Fuson’s (1990) contention that learning to
add and subtract multidigit numbers can contribute to the development of base-ten
number concepts.

Student Errors

Students in the invented-strategy group demonstrated a fundamental under-
standing of base-ten number concepts and multidigit operations, and it is not sur-
prising that they used fewer buggy algorithms than students in the other groups. It
is striking, however, that a substantial number of students in all groups, including
the invented-strategy group, used buggy algorithms for some problems in at least
one interview. Fuson and Briars (1990) and Resnick and Omanson (1987) also found
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18 Invention and Understanding

that students who had developed understanding of multidigit operations occa-
sionally still used buggy algorithms. Resnick and Omanson hypothesized that
buggy procedures are constructed within the realm of procedural knowledge and
can coexist with a reasonable level of understanding of relevant concepts. But Fuson
and Briars found the bugs used by students who had a reasonable understanding of
multidigit operations were not robust and often could be eliminated by simple counter
suggestion. The fact that only three students in the invented-strategy group used buggy
algorithms in more than one interview is consistent with this finding.

Effects of Instruction

The characterization of patterns of development observed in this study cannot be
generalized to all students. Clearly, instruction has a significant impact on what stu-
dents learn and what strategies they use. Students in classes in which algorithms
are the focus and in which no opportunity is provided for discussion of alternative
strategies would undoubtedly show markedly different patterns, as would students
in classes in which students had no exposure to standard algorithms. We are not propos-
ing that this study maps out an invariant pattern of development. It does, however,
provide an existence proof that children can invent strategies for adding and sub-
tracting, what that invention affords, and the role that different concepts may play
in that development.

Implications for Instruction

Instruction was not a focus of this study, and the study says very little about how
students actually learned to use invented strategies. Students in this study were given
opportunities to use and discuss alternative strategies for solving all problems, and
open discussion of alternative strategies characterizes other classrooms in which
there is widespread use of invented strategies (Carpenter et al., 1994). We have con-
ducted year-long case studies of instruction and learning in several first-grade class-
rooms (Carpenter, Levi, Fennema, Ansell, & Franke, 1995). The findings of those
studies suggest that invented strategies develop as abstractions of children’s solu-
tions using tens materials and that they are constructed over time as children dis-
cuss and reflect upon their solutions with the tens materials.

Although we have used the term invented strategy throughout this paper, we are
not proposing that all children individually constructed their own invented strategies
in a vacuum. From the case studies and from the classroom observations conducted
in relation to a larger study of which this study was a part (Fennema et al., 1996), we
know that is not the case. The strategies were constructed in a social context in which
students shared strategies with one another. However, none of the teachers made an
explicit effort to teach a particular invented strategy or gave any one invented strat-
egy a place of prominence. Nevertheless, these strategies could be taught in the same
way that standard algorithms are taught, and a case might be made that some version
of these strategies would be an improvement over current standard algorithms in that
the connections to fundamental base-ten concepts are more apparent.
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Although we have no data regarding explicit instruction on specific invented strate-
gies, we hypothesize that direct instruction could change the quality of children’s
understanding and use of invented strategies. If these strategies were the object of
direct instruction, there would be a danger that children would learn them as rote
procedures in much the way that they learn standard algorithms today. In this study,
we saw relatively few conceptual errors in using invented strategies, whereas
children exhibited a number of buggy procedures in using standard algorithms. The
children in this study had the latitude to adapt their strategies to their level of under-
standing of base-ten number concepts and to use invented strategies that made sense
to them. This probably would not be the case if all children were expected to use
the same strategy at the same time.

Most of the students in this study were exposed to standard algorithms during the
second and third grades. In working with their teachers, we remained neutral on whether
they should teach standard algorithms. We proposed that invented strategies could
be viewed as a means for developing understanding of multidigit concepts and pro-
cedures or as an end in their own right. Because of various pressures, most of the
second- and third-grade teachers opted for standard algorithms at some point. We
are not proposing, however, that as the only choice. On the one hand, a strong case
could be made for not teaching the algorithm at all, given the widespread availability
of calculators for more complex calculations or calculations requiring speed and
efficiency. On the other hand, the results of this study illustrate that invented
strategies can provide a basis for developing understanding of multidigit operations,
even when algorithms are taught.
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